Significant progress has been made for assessing the influence of porosity on the performance metrics for cast components through various modeling techniques. However, a computationally efficient framework to account for porosity with various shapes and sizes is still lacking. The main contribution of this work is to address this limitation. Specifically, a novel porosity sensitivity method is proposed, which integrates the merits of topological sensitivity and shape sensitivity. While topological sensitivity approximates the first order change on the quantity of interest when an infinitesimally small spherical pore is inserted into a dense (no pore) structure, shape sensitivity estimates the subsequent change in the quantity when the small pore boundary is continuously perturbed to resemble the geometry reconstructed from tomography characterization data. In this method, an exterior problem is solved to explicitly formulate pore stress and strain fields as functions of shape scaling parameters. By neglecting higher order pore-to-pore interaction terms, the influence of multiple pores can be estimated through a linear approximation. The proposed method is first studied on a benchmark example to establish the impact of different pore parameters on the estimation accuracy. The method is then applied onto case studies where the pore geometry is either from tomography reconstruction or computer-generated representations. Efficiency and accuracy of the method are finally demonstrated using a commercial 3D application. The proposed method can be extended to other manufacturing (e.g., additive manufacturing) induced porosity problems.


翻译:在评估通过各种模型技术测量成份的性能指标的孔隙效应的影响方面,已经取得了显著的进展;然而,仍然缺乏一个计算效率高的框架来计算各种形状和大小的孔隙特征。这项工作的主要贡献是解决这一局限性。具体地说,提出了一种新的孔隙敏感度方法,其中结合了地形敏感性和形状敏感性的优点。虽然在将微小球孔孔雀插入密密(无孔雀)结构时,地形敏感性接近于利息数量的第一级变化,但是在小孔隙边界不断绕过以各种形状和大小来计算孔隙特征的孔隙特征时,敏感度估计数量随后的变化。在这种方法中,解决了一种外表问题,将孔隙压力和压力领域作为形状参数的功能加以明确拟订。通过忽略更高顺序的孔隙至孔隙互动条件,多种孔隙的影响可以通过线性近度估计来估计。拟议的方法首先研究一个基准示例,以确定不同孔隙隙参数对估计精确度的影响。随后,在利用地形特征特征特征特征数据重新确定后,将采用另一种方法,将采用另一种方法。最后在案例研究中,即采用一种方法,即采用计算方法,从结构再采用。

0
下载
关闭预览

相关内容

《行为与认知机器人学》,241页pdf
专知会员服务
52+阅读 · 2021年4月11日
机器学习组合优化
专知会员服务
106+阅读 · 2021年2月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员