We introduce an efficient first-order primal-dual method for the solution of nonsmooth PDE-constrained optimization problems. We achieve this efficiency through not solving the PDE or its linearisation on each iteration of the optimization method. Instead, we run the method in parallel with a simple conventional linear system solver (Jacobi, Gauss-Seidel, conjugate gradients), always taking only one step of the linear system solver for each step of the optimization method. The control parameter is updated on each iteration as determined by the optimization method. We prove linear convergence under a second-order growth condition, and numerically demonstrate the performance on a variety of PDEs related to inverse problems involving boundary measurements.
翻译:我们引入了一种高效的一阶初等双向方法, 以解决不平稳的受PDE限制的优化问题。 我们通过不解决PDE 或其在优化方法每次迭代中的线性化, 实现这一效率。 相反, 我们运行该方法的同时使用一个简单的常规线性系统求解器( Jacobi, Gauss-Seidel, conjugate 梯度), 优化方法每一步都只使用线性系统求解器的一步。 控制参数根据优化方法确定的每一次迭代进行更新。 我们证明在二阶增长条件下线性趋同, 并用数字来显示与边界测量的反向问题相关的各种PDE的性能 。