Minimax detection of Gaussian stochastic sequences (signals) with unknown covariance matrices is studied. For a fixed false alarm probability (1-st kind error probability), the performance of the minimax detection is being characterized by the best exponential decay rate of the miss probability (2-nd kind error probability) as the length of the observation interval tends to infinity. Our goal is to find the largest set of covariance matrices such that the minimax robust testing of this set (composite hypothesis) can be replaced with testing of only one specific covariance matrix (simple hypothesis) without any loss in detection characteristics. In this paper, we completely describe this maximal set of covariance matrices. Some corollaries address minimax detection of the Gaussian stochastic signals embedded in the White Gaussian noise and detection of the Gaussian stationary signals.
翻译:正在研究Gaussian 随机序列(信号) 的小型检测。 对于固定的假警报概率( 1 种错误概率 ), 迷你式检测的性能特征是误差概率( 2 种错误概率 ) 的最佳指数衰减率, 因为观测间隔的长度一般是无限的。 我们的目标是找到最大的一组共差矩阵, 使这一组的小型稳健测试( 复合假设) 能够被仅测试一个特定的共差矩阵( 简单假设) 所取代, 而不会在检测特性方面有任何损失 。 在本文中, 我们完全描述这组最大共差错矩阵。 一些卷轴处理白高山噪音嵌入的高斯随机信号的小型检测, 以及高斯定点信号的检测 。