A temporal graph has an edge set that may change over discrete time steps, and a temporal path (or walk) must traverse edges that appear at increasing time steps. Accordingly, two temporal paths (or walks) are temporally disjoint if they do not visit any vertex at the same time. The study of the computational complexity of finding temporally disjoint paths or walks in temporal graphs has recently been initiated by Klobas et al. [IJCAI '21]. This problem is motivated by applications in multi-agent path finding (MAPF), which include robotics, warehouse management, aircraft management, and traffic routing. We extend Klobas et al.'s research by providing parameterized hardness results for very restricted cases, with a focus on structural parameters of the so-called underlying graph. On the positive side, we identify sufficiently simple cases where we can solve the problem efficiently. Our results reveal some surprising differences between the "path version" and the "walk version" (where vertices may be visited multiple times) of the problem, and answer several open questions posed by Klobas et al.
翻译:时间图有一个边框, 可能会在离散时间步骤上发生变化, 时间路径( 或行走) 必须绕过时间步骤中出现的边际。 因此, 两个时间路径( 或行走) 如果不同时访问任何顶点, 就会暂时脱节。 Klobas et al. [ ICAI'21] 最近对在时间图中找到时间脱节路径或行走的计算复杂性进行了研究。 这个问题的起因是多试探路径发现中的应用( MAPF), 其中包括机器人、 仓库管理、 飞机管理和交通路线。 我们扩展了 Klobas et al. 的研究范围, 为非常有限的案例提供参数化的硬度结果, 重点是所谓的底点图的结构参数 。 在正面的一面, 我们发现足够简单的案例, 我们可以有效地解决问题。 我们的结果揭示了问题“ 路径版本” 和“ 行走方式( 可能多次访问) 之间的一些惊人的差异, 并回答了 Klobas et al 提出的几个开放的问题 。