Confidence sequences, anytime p-values (called p-processes in this paper), and e-processes all enable sequential inference for composite and nonparametric classes of distributions at arbitrary stopping times. Examining the literature, one finds that at the heart of all these (quite different) approaches has been the identification of nonnegative (super)martingales. Thus, informally, nonnegative (super)martingales are known to be sufficient for \emph{anytime-valid} sequential inference, even in composite and nonparametric settings. Our central contribution is to show that nonnegative martingales are also universal -- after appropriately defining \emph{admissibility}, we show that all admissible constructions of confidence sequences, p-processes, or e-processes must necessarily utilize nonnegative martingales. Our proofs utilize several modern mathematical tools for composite testing and estimation problems: max-martingales, Snell envelopes, transfinite induction, and new Doob-L\'evy martingales make appearances in previously unencountered ways. Informally, if one wishes to perform anytime-valid sequential inference, then any existing approach can be recovered or dominated using nonnegative martingales. We provide several nontrivial examples, with special focus on testing symmetry, where our new constructions render past methods inadmissible. We also prove the subGaussian supermartingale to be admissible.
翻译:信任序列, 任何时候的 p 值( 本文中称为 p- p 进程), 以及电子 进程, 都使得任意停止时能够对混合和非参数性分布类别进行顺序推导。 研究文献后发现, 所有这些( 等异的) 方法的核心是确定非负( 超) 配值。 因此, 非正式的、 非负( 超) 配值( 超) 参数已知足以进行复合测试和估算问题 : 最大配值、 任何时间- valid} 序列推断, 即使是在复合和非参数设置中 。 我们的核心贡献是显示非负对等的配值的配值也具有普遍性 -- -- 在适当定义\ emph{ 允许性 之后, 我们发现所有这些( Q- p- p- 不同) 方法中的所有可接受的构建都是非负偏差( ) 。 因此, 我们的证据使用几种现代数学工具来进行综合测试和估算问题: 最大配值、 Snell 信封信封信封( ) 和新Dobob- Leval marlie mariales adling adling) 配 配 配法( ) 配法( ) -- -- -- -- 一种不反向不计价) 。