This work develops \emph{mixup for graph data}. Mixup has shown superiority in improving the generalization and robustness of neural networks by interpolating features and labels between two random samples. Traditionally, Mixup can work on regular, grid-like, and Euclidean data such as image or tabular data. However, it is challenging to directly adopt Mixup to augment graph data because different graphs typically: 1) have different numbers of nodes; 2) are not readily aligned; and 3) have unique typologies in non-Euclidean space. To this end, we propose $\mathcal{G}$-Mixup to augment graphs for graph classification by interpolating the generator (i.e., graphon) of different classes of graphs. Specifically, we first use graphs within the same class to estimate a graphon. Then, instead of directly manipulating graphs, we interpolate graphons of different classes in the Euclidean space to get mixed graphons, where the synthetic graphs are generated through sampling based on the mixed graphons. Extensive experiments show that $\mathcal{G}$-Mixup substantially improves the generalization and robustness of GNNs.
翻译:这项工作开发了图形数据的 \ emph{ 混合 。 混合显示在通过两个随机样本之间的插图特征和标签改善神经网络的概括性和稳健性方面具有优势。 传统上, 混合可以用于常规的、 网格相似的和 Euclidean 数据, 如图像或表格数据。 但是, 直接采用混合来增加图形数据具有挑战性, 因为不同的图表一般是:1) 有不同的节点数字; 2 并不易对齐; 和 3) 在非欧元空间中有独特的类型。 为此, 我们提议 $\ mathcal{ G} 混合图形通过对不同类别图形的生成进行图解分类, 具体地说, 我们首先使用同一类中的图表来估计图形。 然后, 我们不直接操纵图形, 我们将欧洲clidean 空间中不同类别的不同类的图解用于获取混合图解。 在此端, 我们建议 合成图表是通过基于混合图形的取样生成的, GM 和 GM 基本的 GMA} 显示 $ 。