Data is the fuel of data science and machine learning techniques for smart grid applications, similar to many other fields. However, the availability of data can be an issue due to privacy concerns, data size, data quality, and so on. To this end, in this paper, we propose a Variational AutoEncoder Generative Adversarial Network (VAE-GAN) as a smart grid data generative model which is capable of learning various types of data distributions and generating plausible samples from the same distribution without performing any prior analysis on the data before the training phase.We compared the Kullback-Leibler (KL) divergence, maximum mean discrepancy (MMD), and Wasserstein distance between the synthetic data (electrical load and PV production) distribution generated by the proposed model, vanilla GAN network, and the real data distribution, to evaluate the performance of our model. Furthermore, we used five key statistical parameters to describe the smart grid data distribution and compared them between synthetic data generated by both models and real data. Experiments indicate that the proposed synthetic data generative model outperforms the vanilla GAN network. The distribution of VAE-GAN synthetic data is the most comparable to that of real data.
翻译:数据是数据科学和机器学习技术的燃料,用于智能网格应用,与其他许多领域相似。然而,数据的提供可能是一个问题,原因是隐私问题、数据大小、数据质量等等。为此,我们在本文件中提议采用变式自动 Encoder 生成反转网络(VAE-GAN),作为智能网格数据变异模型(VAE-GAN),以评价我们模型的性能。此外,我们使用五个关键统计参数来描述智能网格数据分布,并将两种模型产生的合成数据与真实数据进行比较。实验表明,拟议的合成数据归异模型比Vanilla GAN网络的合成数据(电荷和PV生产)分布和真实数据分布之间的距离(VAE-GAN网络)要高得多。VAE-AN的合成数据分布最具有可比性。