The paper discusses shrinkage priors which impose increasing shrinkage in a sequence of parameters. We review the cumulative shrinkage process (CUSP) prior of Legramanti et al. (2020), which is a spike-and-slab shrinkage prior where the spike probability is stochastically increasing and constructed from the stick-breaking representation of a Dirichlet process prior. As a first contribution, this CUSP prior is extended by involving arbitrary stick-breaking representations arising from beta distributions. As a second contribution, we prove that exchangeable spike-and-slab priors, which are popular and widely used in sparse Bayesian factor analysis, can be represented as a finite generalized CUSP prior, which is easily obtained from the decreasing order statistics of the slab probabilities. Hence, exchangeable spike-and-slab shrinkage priors imply increasing shrinkage as the column index in the loading matrix increases, without imposing explicit order constraints on the slab probabilities. An application to sparse Bayesian factor analysis illustrates the usefulness of the findings of this paper. A new exchangeable spike-and-slab shrinkage prior based on the triple gamma prior of Cadonna et al. (2020) is introduced and shown to be helpful for estimating the unknown number of factors in a simulation study.
翻译:本文讨论了在一系列参数中造成日益萎缩的缩缩前科,我们审查了Legramanti等人(202020年)之前的累积缩缩过程(CUSP),这是在峰值概率急剧增加和从Drichlet进程之前的破碎表示中构建的一个螺旋缩缩缩过程之前的一个小块缩缩缩过程(CUSP),因此,作为第一个贡献,CUSP之前的缩缩压过程涉及因 beta 分布的任意刺破性表示而扩大。作为第二个贡献,我们证明,在稀疏的Bayesian系数分析中流行和广泛使用的可互换的刺动和悬浮前科,可以作为有限的普遍缩缩缩缩缩过程,这是从稀有的Bayesian系数分析中容易得到的。因此,随着装载矩阵表指数的增加,可互换的涨缩缩前科意味着随着柱值的上升而增加,同时没有对浮标的概率施加明确的命令限制。对稀薄的Bayesian系数分析表明本文件的调查结果的有用性。新的可互换的螺旋和悬浮的Clas-la-al-la-al-al-al-al-al-al-al-al-al-al-al-assilling 20之前的模拟研究显示有帮助性数值的20的C-c-cal-cal-cal-cal-cal-al-cal-cal-cal-cal-cal-cal-cal-al-cal-al-cal-cal-cal-cal-cal-d-cal-ad-al-al-ad-ad-al-ad-ad-cal-d-al-al-al-al-al-al-al-al-al-al-al-al-al-al-I)。</s>