Model-based controllers on real robots require accurate knowledge of the system dynamics to perform optimally. For complex dynamics, first-principles modeling is not sufficiently precise, and data-driven approaches can be leveraged to learn a statistical model from real experiments. However, the efficient and effective data collection for such a data-driven system on real robots is still an open challenge. This paper introduces an optimization problem formulation to find an informative trajectory that allows for efficient data collection and model learning. We present a sampling-based method that computes an approximation of the trajectory that minimizes the prediction uncertainty of the dynamics model. This trajectory is then executed, collecting the data to update the learned model. In experiments we demonstrate the capabilities of our proposed framework when applied to a complex omnidirectional flying vehicle with tiltable rotors. Using our informative trajectories results in models which outperform models obtained from non-informative trajectory by 13.3\% with the same amount of training data. Furthermore, we show that the model learned from informative trajectories generalizes better than the one learned from non-informative trajectories, achieving better tracking performance on different tasks.
翻译:真正的机器人的模型控制器需要精确的系统动态知识才能最优化地发挥作用。 对于复杂的动态,首先原则模型不够精确,数据驱动的方法可以被利用来从实际实验中学习统计模型。然而,在真正的机器人上为这种数据驱动系统收集高效和有效的数据仍是一个公开的挑战。本文件引入了一个优化问题配置,以找到一个信息化的轨迹,从而能够有效地收集数据和模型学习。我们提出了一个基于取样的方法,计算轨迹的近似性,从而将动态模型的预测不确定性降到最低。然后执行这一轨迹,收集数据以更新学习的模型。在实验中,我们展示了我们拟议框架在应用到带有可倾斜转转转转的复杂万向飞行飞行器时的能力。使用我们信息化的轨迹生成模型,这些模型在13.3 ⁇ 和相同数量的培训数据中超过了从非信息化轨迹中获得的模型。此外,我们显示,从信息性轨迹中学到的模型比从非强化轨迹轨迹中学到的模型要好,从而更好地跟踪不同任务的绩效。