The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
翻译:Regge-Wheeler-Zerilli(RWZ)波状波状(RWZ)波状(RWZ)波状(Schwarzschild-Droste)黑洞扰动) 。 源词包含一个Dirac分布及其衍生物。 我们以前设计了时间域的集成方法。 它包含一个有限的差异方案, 分析表达式通过跳跃条件处理波功能的不连续性, 取代源和潜力的直接集成。 在这里, 我们成功地在第二顺序上对EMRI(Extreme massirover Inspiral)源的大地学通用轨道应用了同样的方法。 EMRI是一个由超大型黑洞(SMBH)捕获的紧凑星。 这些被认为是在强大系统中测试引力的最佳探测器。 对于不同轨道( 丙型、 Explict、 parbol, 包括 缩放-whil), 引力波状波状波状、 热能和无尽度的角动力与其他方法进行了计算, 与其他方法相比是广泛的计算和广泛的。