Most differentiable neural architecture search methods construct a super-net for search and derive a target-net as its sub-graph for evaluation. There exists a significant gap between the architectures in search and evaluation. As a result, current methods suffer from an inconsistent, inefficient, and inflexible search process. In this paper, we introduce EnTranNAS that is composed of Engine-cells and Transit-cells. The Engine-cell is differentiable for architecture search, while the Transit-cell only transits a sub-graph by architecture derivation. Consequently, the gap between the architectures in search and evaluation is significantly reduced. Our method also spares much memory and computation cost, which speeds up the search process. A feature sharing strategy is introduced for more balanced optimization and more efficient search. Furthermore, we develop an architecture derivation method to replace the traditional one that is based on a hand-crafted rule. Our method enables differentiable sparsification, and keeps the derived architecture equivalent to that of Engine-cell, which further improves the consistency between search and evaluation. Besides, it supports the search for topology where a node can be connected to prior nodes with any number of connections, so that the searched architectures could be more flexible. For experiments on CIFAR-10, our search on the standard space requires only 0.06 GPU-day. We further have an error rate of 2.22% with 0.07 GPU-day for the search on an extended space. We can also directly perform the search on ImageNet with topology learnable and achieve a top-1 error rate of 23.8% in 2.1 GPU-day.


翻译:最有差异的神经结构搜索方法为搜索建立一个超级网,并得出一个目标网,作为评估的子图。在搜索和评估方面,各结构之间存在巨大的差距。因此,目前的方法存在不一致、低效和不灵活的搜索过程。在本文中,我们引入了由引擎细胞和中转细胞组成的EnTranNAS。引擎细胞可以进行建筑搜索,而中转细胞只能通过结构衍生的子图进行。因此,搜索和评估结构之间的差距大大缩小。我们的方法还节省了大量的内存和计算成本,从而加快搜索进程。因此,目前的方法存在不一致、低效和不灵活的搜索过程。此外,我们开发了一种由引擎细胞和中转细胞构成的传统模型衍生方法。我们的方法可以使结构变得不同,而结构与引擎细胞相仿而成的子图,从而进一步改善搜索和评估的一致性。此外,我们的方法也为搜索表层学提供了大量的记忆和计算成本, 也为搜索速度提供了更多的记忆和计算成本。我们没有时间上的搜索速度, 在G- 25 之前的搜索中,我们只能进行更灵活的搜索。

1
下载
关闭预览

相关内容

指分类错误的样本数占样本总数的比例。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《深度卷积神经网络理论》报告,35页ppt
专知会员服务
45+阅读 · 2020年11月30日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
8+阅读 · 2021年1月28日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年3月19日
Arxiv
8+阅读 · 2021年1月28日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Top
微信扫码咨询专知VIP会员