Recent state-of-the-art methods for neural architecture search (NAS) exploit gradient-based optimization by relaxing the problem into continuous optimization over architectures and shared-weights, a noisy process that remains poorly understood. We argue for the study of single-level empirical risk minimization to understand NAS with weight-sharing, reducing the design of NAS methods to devising optimizers and regularizers that can quickly obtain high-quality solutions to this problem. Invoking the theory of mirror descent, we present a geometry-aware framework that exploits the underlying structure of this optimization to return sparse architectural parameters, leading to simple yet novel algorithms that enjoy fast convergence guarantees and achieve state-of-the-art accuracy on the latest NAS benchmarks in computer vision. Notably, we exceed the best published results for both CIFAR and ImageNet on both the DARTS search space and NAS-Bench201; on the latter we achieve near-oracle-optimal performance on CIFAR-10 and CIFAR-100. Together, our theory and experiments demonstrate a principled way to co-design optimizers and continuous relaxations of discrete NAS search spaces.
翻译:最近最先进的神经结构搜索方法(NAS)利用基于梯度的优化,将问题放松到建筑和共享重量的连续优化中,这是一个仍然难以理解的噪音过程。我们主张研究单级实证风险最小化,以分享重量来理解NAS,减少NAS设计方法的设计,以设计能够迅速获得高质量解决这一问题的优化器和正规化器。我们引用镜底理论,提出了一个几何学认知框架,利用这种优化的基本结构恢复稀薄的建筑参数,导致简单而新颖的算法,享受快速趋同保证,并实现计算机愿景中最新NAS基准的最新最新精确度。值得注意的是,我们超过了在DARTS搜索空间和NAS-Bench201上CIFAR和图像网络发布的最佳结果;在后者上,我们在CIFAR-10和CIFAR-100上取得了近乎最优化的绩效。我们理论和实验共同设计优化器和不断放松离散的NAS搜索空间的原则性方法。