State-of-the-art noisy intermediate-scale quantum computers require low-complexity techniques for the mitigation of computational errors inflicted by quantum decoherence. Symmetry verification constitutes a class of quantum error mitigation (QEM) techniques, which distinguishes erroneous computational results from the correct ones by exploiting the intrinsic symmetry of the computational tasks themselves. Inspired by the benefits of quantum switch in the quantum communication theory, we propose beneficial techniques for circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state. In particular, we propose the spatio-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain stabilizer formalism to circuit-oriented stabilizers. The applicability and implementational strategies of the proposed techniques are demonstrated by using practical quantum algorithms, including the quantum Fourier transform (QFT) and the quantum approximate optimization algorithm (QAOA).
翻译:根据量子通信理论中量子开关的好处,我们建议采用低复杂技术来减少量子脱节造成的计算误差。对称核查是一种量子误差(QEM)技术,它通过利用计算任务本身内在的对称,将错误的计算结果与正确的计算结果区分开来。我们建议采用有益的技术来进行以电路为导向的对称核查,以便能够在不知晓量子状态的情况下核查量子电路的共通性。特别是,我们提议了将常规量子稳定剂形式归纳为以电路为导向的稳定剂。通过使用实用量子算法,包括量子 Fourier变换(QFT)和量子近似优化算法(QAOA),可以证明拟议技术的适用性和实施战略。