Quantum-classical molecular dynamics, as a partial classical limit of the full quantum Schr\"odinger equation, is a widely used framework for quantum molecular dynamics. The underlying equations are nonlinear in nature, containing a quantum part (represents the electrons) and a classical part (stands for the nuclei). An accurate simulation of the wave function typically requires a time step comparable to the rescaled Planck constant $h$, resulting in a formidable cost when $h\ll 1$. We prove an additive observable error bound of Schwartz observables for the proposed time-splitting schemes based on semiclassical analysis, which decreases as $h$ becomes smaller. Furthermore, we establish a uniform-in-$h$ observable error bound, which allows an $\mathcal{O}(1)$ time step to accurately capture the physical observable regardless of the size of $h$. Numerical results verify our estimates.
翻译:作为整量子 Schr\'dinger 方程式的一个部分古典限制,量子分子动态是一个广泛使用的量子分子动态框架。基底方程式是非线性性质,包含量子部分(代表电子)和经典部分(代表核的立方体)。精确模拟波函数通常需要一个与重新标定的普朗克常数美元相当的时间步骤,导致在1美元时费用高昂。我们证明Schwartz观测到的基于半门类分析的拟议时间分割计划存在一个累加的可观测错误,这种错误随着美元逐渐减少而减少。此外,我们建立了一个统一的每小时可观察到的误差,允许用美元来准确捕捉物理可观察的数据,而不管其大小是1美元。数字结果证实了我们的估算。