One of the main objectives of quantum error-correction theory is to construct quantum codes with optimal parameters and properties. In this paper, we propose a class of 2-generator quasi-cyclic codes and study their applications in the construction of quantum codes over small fields. Firstly, some sufficient conditions for these 2-generator quasi-cyclic codes to be dual-containing concerning Hermitian inner product are determined. Then, we utilize these Hermitian dual-containing quasi-cyclic codes to produce quantum codes via the famous Hermitian construction. Moreover, we present a lower bound on the minimum distance of these quasi-cyclic codes, which is helpful to construct quantum codes with larger lengths and dimensions. As the computational results, many new quantum codes that exceed the quantum Gilbert-Varshamov bound are constructed over $F_q$, where $q$ is $2,3,4,5$. In particular, 16 binary quantum codes raise the lower bound on the minimum distance in Grassl's table \cite{Grassl:codetables}. In nonbinary cases, many quantum codes are new or have better parameters than those in the literature.
翻译:量子误差校正理论的主要目标之一是建立量子编码,使其具有最佳参数和特性。 在本文中,我们提出一组2个生成器准周期编码,并研究其在小领域构建量子编码方面的应用。 首先,为这些2个生成器准周期编码确定一些足够的条件,使这些2个生成器准周期编码对Hermitian内产物具有双重含蓄性。 然后,我们利用这些Hermitian的含有双重成分的准周期编码,通过著名的Hermitian建筑来生成量子编码。此外,我们对这些准周期编码的最低距离提出了较低的约束,这有助于在更长的长度和尺寸上构建量子编码。由于计算结果,许多超过Gilbert-Varshamov内装体的量子编码的新的量子编码都建于$_q美元以上,其中美元为2,4,5美元。特别是,16个二进制量子编码在格拉斯尔表\cite{Glassl:codables}的最小距离上提高了界限。在非二元情况下,许多量子编码是新的或比文献中的参数更好的参数。