Reconfigurable intelligent surfaces (RIS) are expected to play an important role in future wireless communication systems. These surfaces typically rely on their reflection beamforming codebooks to reflect and focus the signal on the target receivers. Prior work has mainly considered pre-defined RIS beamsteering codebooks that do not adapt to the environment and hardware and lead to large beam training overhead. In this work, a novel deep reinforcement learning based framework is developed to efficiently construct the RIS reflection beam codebook. This framework adopts a multi-level design approach that transfers the learning between the multiple RIS subarrays, which speeds up the learning convergence and highly reduces the computational complexity for large RIS surfaces. The proposed approach is generic for co-located/distributed RIS surfaces with arbitrary array geometries and with stationary/non-stationary channels. Further, the developed solution does not require explicitly channel knowledge and adapts the codebook beams to the surrounding environment, user distribution, and hardware characteristics. Simulation results show that the proposed learning framework can learn optimized interaction codebooks within reasonable iterations. Besides, with only 6 beams, the learned codebook outperforms a 256-beam DFT codebook, which significantly reduces the beam training overhead.


翻译:重新配置的智能表面(RIS)预计将在未来无线通信系统中发挥重要作用。这些表面通常依赖其反射波形代码库来反映和突出目标接收器的信号。先前的工作主要考虑的是预先定义的不适应环境和硬件并导致大量光束培训间接费用的RIS波形代码册。在这项工作中,开发了一个新的深层强化学习基础框架,以高效构建RIS反射波束代码本。这个框架采用了多层次设计方法,在多个IRS子阵列之间传授学习知识,加快学习趋同,并大大降低大型RIS表面的计算复杂性。拟议的方法是通用的,用于具有任意阵列地理特征和固定/不固定通道的共定位/分散的RIS表面。此外,发达的解决方案不需要明确传输知识,也不需要根据周围环境、用户分布和硬件特性调整代码。模拟结果显示,拟议的学习框架可以学习在合理迭代码内部的优化互动代码。此外,只有6个FSDD格式才能大幅降低标准。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2021年2月8日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员