A reconfigurable intelligent surface (RIS) employs an array of individually-controllable elements to scatter incident signals in a desirable way; for example, to facilitate links between base stations and mobile stations that would otherwise be blocked. A principal consideration in the study of RIS-enabled propagation channels is path loss. This paper presents a simple yet broadly-applicable method for calculating the path loss of a channel consisting of a passive reflectarray-type RIS. This model is then used to characterize path loss as a function of RIS size, link geometry, and the method used to set the element states. Whereas previous work presumes either (1) an array of parameterizable element patterns and spacings (most useful for analysis of specific designs) or (2) a continuous electromagnetic surface (most useful for determining scaling laws and theoretical limits), this work begins with (1) and is then shown to be consistent with (2), making it possible to identify specific practical designs and scenarios that exhibit the performance predicted using (2). This model is used to further elucidate the matter of path loss of the RIS-enabled channel relative to that of the free space direct and specular reflection channels, which is an important consideration in the design of networks employing RIS technology.


翻译:一个可重新配置的智能表面(RIS)使用一系列可逐项控制的元素,以适当的方式散布事件信号;例如,便利基地站和移动站之间的联系,否则这些信号将受到阻塞。在研究借助RIS的传播渠道时,主要考虑的是路径丢失。本文介绍了计算由被动反射阵型RIS组成的通道路径丢失的简单而广泛适用的方法。然后,该模型用于将路径丢失定性为RIS大小、链接几何以及设定元素状态的方法的函数。而先前的工作假定:(1) 一系列可参数化元素模式和间距(最有利于分析具体设计)或(2) 连续电磁表面(最有利于确定比例法和理论限制),这项工作始于(1),然后显示与(2) 相一致,从而有可能确定具体的实际设计和情景,以显示预测的性能(2) 。该模型用来进一步说明经RIS导航的通道相对于自由空间直接和视镜反射频道的路径丢失的问题,这是设计系统网络的一个重要考虑。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
专知会员服务
60+阅读 · 2020年3月19日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员