This study combines simulated annealing with delta evaluation to solve the joint stratification and sample allocation problem. In this problem, atomic strata are partitioned into mutually exclusive and collectively exhaustive strata. Each partition of atomic strata is a possible solution to the stratification problem, the quality of which is measured by its cost. The Bell number of possible solutions is enormous, for even a moderate number of atomic strata, and an additional layer of complexity is added with the evaluation time of each solution. Many larger scale combinatorial optimisation problems cannot be solved to optimality, because the search for an optimum solution requires a prohibitive amount of computation time. A number of local search heuristic algorithms have been designed for this problem but these can become trapped in local minima preventing any further improvements. We add, to the existing suite of local search algorithms, a simulated annealing algorithm that allows for an escape from local minima and uses delta evaluation to exploit the similarity between consecutive solutions, and thereby reduces the evaluation time. We compared the simulated annealing algorithm with two recent algorithms. In both cases, the simulated annealing algorithm attained a solution of comparable quality in considerably less computation time.
翻译:此项研究将模拟annealing与三角洲评估结合起来, 以解决联合分层和样本分配问题。 在这个问题中, 原子层被分割成相互排斥和集体包罗无遗的层层。 原子层的每个分区是分层问题的一种可能的解决方案, 其质量以成本来衡量。 可能的解决办法的钟数是巨大的, 即使是少量的原子层, 并且随着每个解决办法的评估时间的增加而增加一层复杂性 。 许多规模较大的组合优化问题无法解决, 达到最佳效果, 因为寻找最佳的解决方案需要令人望而却步的计算时间。 一些本地的搜索超自然算法已经为此问题设计好了, 但是这些算法可能困在本地的迷你马中, 防止任何进一步的改进 。 在现有的一套本地搜索算法中, 我们加上一个模拟的Annealing 算法, 允许逃离本地迷你马, 并使用三角洲评估来利用连续解决方案之间的相似性, 从而缩短评估时间。 我们用两个最近的算法比较了模拟的算法。 在两种情况中, 模拟的时间算算算法在相当不那么相似的质量中, 。