In this work, we propose a parameterised quantum circuit learning approach to point set matching problem. In contrast to previous annealing-based methods, we propose a quantum circuit-based framework whose parameters are optimised via descending the gradients w.r.t a kernel-based loss function. We formulate the shape matching problem into a distribution learning task; that is, to learn the distribution of the optimal transformation parameters. We show that this framework is able to find multiple optimal solutions for symmetric shapes and is more accurate, scalable and robust than the previous annealing-based method. Code, data and pre-trained weights are available at the project page: \href{https://hansen7.github.io/qKC}{https://hansen7.github.io/qKC}
翻译:在此工作中, 我们提出一个参数化量子电路学习方法, 以设定匹配问题 。 与以往基于 annealing 的方法相比, 我们提议了一个基于量子电路的框架, 其参数通过降低梯度优化, 以内核为基础的损失函数。 我们将形状匹配问题发展成分布式学习任务; 也就是说, 学习最佳变换参数的分布 。 我们显示, 这个框架能够找到对称形状的多重最佳解决方案, 并且比之前基于 annealing 的方法更准确、 可缩放和有力 。 代码、 数据和预先训练的重量可以在项目网页上查阅 :\href{https://hansen7. github.io/qKC_ https://hansen7. github. qKC}