Two major considerations when encoding pseudo-Boolean (PB) constraints into SAT are the size of the encoding and its propagation strength, that is, the guarantee that it has a good behaviour under unit propagation. Several encodings with propagation strength guarantees rely upon prior compilation of the constraints into DNNF (decomposable negation normal form), BDD (binary decision diagram), or some other sub-variants. However it has been shown that there exist PB-constraints whose ordered BDD (OBDD) representations, and thus the inferred CNF encodings, all have exponential size. Since DNNFs are more succinct than OBDDs, preferring encodings via DNNF to avoid size explosion seems a legitimate choice. Yet in this paper, we prove the existence of PB-constraints whose DNNFs all require exponential size.


翻译:在将伪Boolean(PB)限制编码成SAT时,两个主要考虑因素是编码的大小及其传播强度,即保证其在单位传播中行为良好。几个带有传播力度保障的编码依赖于事先将限制编入DNNF(非可反常格式)、BDD(二进制决定图)或其他一些次变量。然而,已经表明存在PB-约束,其订购的BDD(OBDD)表示方式,从而推导的CNF编码都具有指数大小。由于DNF比OBDDs更简洁,通过DNNF将编码改为DNF以避免规模爆炸似乎是合理的选择。然而,在本文中,我们证明存在PB-约束,其DNFs都需要指数大小。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月2日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员