This paper is dedicated to solve high-dimensional coupled FBSDEs with non-Lipschitz diffusion coefficients numerically. Under mild conditions, we provide a posterior estimate of the numerical solution which holds for arbitrary time duration. This posterior estimate justifies the convergence of the recently proposed Deep BSDE method. We also construct a numerical scheme based on the Deep BSDE method and present numerical examples in financial markets to show the high performance.
翻译:本文致力于用非利普西茨扩散系数数字解决高维结合的FBSDEs。 在温和条件下, 我们对任意持续时间的数值解决方案进行后期估计。 这种后端估计证明最近提议的深BSDE方法的趋同是合理的。 我们还根据深BSDE方法构建了一个数字方案,并在金融市场上提供数字实例,以显示高性能。