In this paper, we propose a novel adaptive decoding mechanism (ADM) for the unmanned aerial vehicle (UAV)-enabled uplink (UL) non-orthogonal multiple access (NOMA) communications. Specifically, considering a harsh UAV environment, where ground-to-ground links are regularly unavailable, the proposed ADM overcomes the challenging problem of conventional UL-NOMA systems whose performance is sensitive to the transmitter's statistical channel state information and the receiver's decoding order. To evaluate the performance of the ADM, we derive closed-form expressions for the system outage probability (OP) and system throughput. In the performance analysis section, we provide novel expressions for practical air-to-ground and ground-to-air channels, while taking into account the practical implementation of imperfect successive interference cancellation (SIC) in UL-NOMA. Moreover, the obtained expression can be adopted to characterize the OP of various systems under a Mixture of Gamma (MG) distribution-based fading channels. Next, we propose a sub-optimal Gradient Descent-based algorithm to obtain the power allocation coefficients that result in maximum throughput with respect to each location on UAV's trajectory. To determine the significance of the proposed ADM in nonstationary environments, we consider the ground users and the UAV to move according to the Random Waypoint Mobility (RWM) and Reference Point Group Mobility (RPGM) models, respectively. Accurate formulas for the distance distributions are also provided. Numerical solutions demonstrate that the ADM-enhanced NOMA not only outperforms Orthogonal Multiple Access (OMA), but also improves the performance of UAV-enabled UL-NOMA even in mobile environments.


翻译:在本文中,我们为无人驾驶航空飞行器(UAV)驱动的非横向多端连接(NOMA)通信提出了一个新型的适应解码机制(ADM ) 。 具体而言,考虑到无人驾驶航空飞行器(UL)的非横向多端连接(NOMA)通信环境非常严酷,经常没有地对地连接,拟议的ADM克服了传统UL-NOMA系统的挑战性难题,这些系统的运作对发射机的统计频道国家信息和接收器解码程序十分敏感。为了评价ADM的性能,我们为系统偏差概率(OP)和系统截断线提供了闭式表达式表达方式。在绩效分析部分,我们还为实际的空对地和地对空连接提供了新的表达方式,同时考虑到UL-NOMA连续取消干扰(SIC)的实际实施不完善。此外,可以采用获得的表达方式来描述各种系统在伽玛(MG)仅以分布为基的淡化渠道(MG)的运行状态。我们提议了一个次优化的梯度对基于深度的流离值解决方案(ODM)的算法的计算方法,以获得动力分配的分级计算方法,从而在AAMA的每个轨道上显示轨道运行的运行的运行的运行中,从而决定了AVMDMDMDMDMDM的运行中的最大位置上的结果。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月1日
Arxiv
0+阅读 · 2023年4月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员