In this paper, we prove a local limit theorem for the chi-square distribution with $r > 0$ degrees of freedom and noncentrality parameter $\lambda \geq 0$. We use it to develop refined normal approximations for the survival function. Our maximal errors go down to an order of $r^{-2}$, which is significantly smaller than the maximal error bounds of order $r^{-1/2}$ recently found by Horgan & Murphy (2013) and Seri (2015). Our results allow us to drastically reduce the number of observations required to obtain negligible errors in the energy detection problem, from $250$, as recommended in the seminal work of Urkowitz (1967), to only $8$ here with our new approximations. We also obtain an upper bound on several probability metrics between the central and noncentral chi-square distributions and the standard normal distribution, and we obtain an approximation for the median that improves the lower bound previously obtained by Robert (1990).
翻译:在本文中, 我们证明, 以 $ > 0 $ 的自由度和非集中度参数 $\ lambda\ geq 0 美元来分配 Chi- quare 的本地限值理论值。 我们用它来为生存功能开发精细的正常近似值。 我们的最大错误降为 $ ⁇ -2 美元, 这大大小于 organ & Murphy (2013年) 和 Seri (2015年) 最近发现的最大错误范围 $ $ ⁇ -1/2 } 。 我们的结果使我们能够按照乌尔科维茨 (1967年) 的半成品的建议, 大幅降低在能源探测问题中获得可忽略的错误所需的观测次数, 从 250 美元 减少到 $ 8 美元 。 我们还在中央和非中央 chi- quar 分布 和 标准正常分布之间获得若干概率指标的上限, 并且我们获得了改进 Robert (1990年) 先前获得的较低约束的中位的中位值的近值 。