Wavelet quantile normalization (WQN) is a nonparametric algorithm designed to efficiently remove transient artifacts from single-channel EEG in real-time clinical monitoring. Today, EEG monitoring machines suspend their output when artifacts in the signal are detected. Removing unpredictable EEG artifacts would thus allow to improve the continuity of the monitoring. We analyze the WQN algorithm which consists in transporting wavelet coefficient distributions of an artifacted epoch into a reference, uncontaminated signal distribution. We show that the algorithm regularizes the signal. To confirm that the algorithm is well suited, we study the empirical distributions of the EEG and the artifacts wavelet coefficients. We compare the WQN algorithm to the classical wavelet thresholding methods and study their effect on the distribution of the wavelet coefficients. We show that the WQN algorithm preserves the distribution while the thresholding methods can cause alterations. Finally, we show how the spectrogram computed from an EEG signal can be cleaned using the WQN algorithm.
翻译:波列孔径正常化(WQN)是一种非参数算法,目的是在实时临床监测中从单一通道 EEG 中有效清除瞬态文物。 今天, EEG 监测机器在检测信号中的文物时暂停其输出。 排除不可预测的 EEG 工艺品将因此可以改善监测的连续性。 我们分析WQN 算法, 包括将一个文物时代的波列系数分布传输到一个参考, 未受污染的信号分布中。 我们显示, 该算法对信号进行了规范。 为了确认该算法非常合适, 我们研究了 EEG 和 文物波列系数的经验分布。 我们比较了 WQN 算法对典型波列临界值分配的影响。 我们显示, WQN 算法保留了分布, 而阈值方法可以导致改变。 最后, 我们展示了如何使用 WQN 算法来清理从 EEG 信号计算的光谱图。