HybrIK relies on a combination of analytical inverse kinematics and deep learning to produce more accurate 3D pose estimation from 2D monocular images. HybrIK has three major components: (1) pretrained convolution backbone, (2) deconvolution to lift 3D pose from 2D convolution features, (3) analytical inverse kinematics pass correcting deep learning prediction using learned distribution of plausible twist and swing angles. In this paper we propose an enhancement of the 2D to 3D lifting module, replacing deconvolution with Transformer, resulting in accuracy and computational efficiency improvement relative to the original HybrIK method. We demonstrate our results on commonly used H36M, PW3D, COCO and HP3D datasets. Our code is publicly available https://github.com/boreshkinai/hybrik-transformer.


翻译:HybrIK依靠分析反动学和深层次学习相结合,从 2D 单体图像中得出更准确的 3D 3D 表示估计。 HybrIK 有三个主要组成部分:(1) 预演的革命骨干,(2) 变动以从 2D 变异特征中提升 3D 3D 表示,(3) 分析反动运动通过,利用合理扭曲和摇摆角度的学术分布来纠正深层次的学习预测。在本文中,我们建议将 2D 升至 3D 升动模块,用变异器取代变异器,从而比原HybrIK 方法更准确和计算效率提高。我们在常用的 H36M、PW3D、COCO和HP3D数据集中展示了我们的结果。我们的代码可以公开查阅 https://github.com/boreshkinai/hybrik-transtext。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员