Object pose estimation is a critical task in robotics for precise object manipulation. However, current techniques heavily rely on a reference 3D object, limiting their generalizability and making it expensive to expand to new object categories. Direct pose predictions also provide limited information for robotic grasping without referencing the 3D model. Keypoint-based methods offer intrinsic descriptiveness without relying on an exact 3D model, but they may lack consistency and accuracy. To address these challenges, this paper proposes ShapeShift, a superquadric-based framework for object pose estimation that predicts the object's pose relative to a primitive shape which is fitted to the object. The proposed framework offers intrinsic descriptiveness and the ability to generalize to arbitrary geometric shapes beyond the training set.


翻译:目标姿态估计是机器人精确物体操作的重要任务。然而,当前的技术严重依赖于参考三维对象,限制了它们的泛化能力,并使得扩展到新的物体类别的代价昂贵。直接姿态预测对于机器人抓取提供有限的信息,而不参考3D模型。基于关键点的方法提供了内在描述性而不需要精确的3D模型,但它们可能缺乏一致性和精度。为了解决这些挑战,本文提出了ShapeShift,一种基于超椭球的物体姿态估计框架,它预测相对于拟合到物体上的基元形状的物体姿态。所提出的框架提供了内在的描述性和超越训练数据集的任意几何形状的泛化能力。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2021年3月3日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2021年3月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员