Variance-based global sensitivity analysis, in particular Sobol' analysis, is widely used for determining the importance of input variables to a computational model. Sobol' indices can be computed cheaply based on spectral methods like polynomial chaos expansions (PCE). Another choice are the recently developed Poincar\'e chaos expansions (PoinCE), whose orthonormal tensor-product basis is generated from the eigenfunctions of one-dimensional Poincar\'e differential operators. In this paper, we show that the Poincar\'e basis is the unique orthonormal basis with the property that partial derivatives of the basis form again an orthogonal basis with respect to the same measure as the original basis. This special property makes PoinCE ideally suited for incorporating derivative information into the surrogate modelling process. Assuming that partial derivative evaluations of the computational model are available, we compute spectral expansions in terms of Poincar\'e basis functions or basis partial derivatives, respectively, by sparse regression. We show on two numerical examples that the derivative-based expansions provide accurate estimates for Sobol' indices, even outperforming PCE in terms of bias and variance. In addition, we derive an analytical expression based on the PoinCE coefficients for a second popular sensitivity index, the derivative-based sensitivity measure (DGSM), and explore its performance as upper bound to the corresponding total Sobol' indices.


翻译:以差异为基础的全球敏感度分析, 特别是 Sobol 的分析, 被广泛用于确定输入变量对计算模型的重要性。 Sobol 指数可以廉价地根据光谱方法, 如多元混乱扩张( PCE) 来计算。 另一个选择是最近开发的Poincar\'e混乱扩张( Poince ), 其正统性高压产品基础来自单维Poincar\'e 差异操作员的异常功能。 在本文件中, 我们显示Poincar\'e 基础是独特的异常基础, 其属性是: 基础部分衍生物的衍生物在最初的基础上再次形成一个正反向基础。 这种特殊属性使得Poince 适合将衍生物信息纳入配方建模进程。 假设对计算模型的部分衍生物评价来自单维度, 我们根据Pincar\'e基础功能或部分衍生物基础, 分别通过稀释回归来计算光谱扩展。 我们用两个数字示例显示, 基于衍生物基础的衍生物衍生物的衍生物衍生物衍生物衍生物在原始基指数中提供了精确的精确的精确估计, 度度, 其分析性指数在SBEBEBEBE 上, 度上, 度上, 的高级分析性变化指数的上, 的上升的上升性变压值的上升性指数的上升的上, 的上升性指数的精确度, 度的高级性指数的精确度, 。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月15日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
基于几何特征的激光雷达地面点云分割
泡泡机器人SLAM
15+阅读 · 2018年4月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员