We obtain computational hardness results for f-vectors of polytopes by exhibiting reductions of the problems DIVISOR and SEMI-PRIME TESTABILITY to problems on f-vectors of polytopes. Further, we show that the corresponding problems for f-vectors of simplicial polytopes are polytime solvable. The regime where we prove this computational difference (conditioned on standard conjectures on the density of primes and on $P\neq NP$) is when the dimension $d$ tends to infinity and the number of facets is linear in $d$.
翻译:我们通过显示DIVISOR和SEMI-PRIME测试对多式顶端顶部顶部顶部顶部顶部顶部顶部顶部的顶部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部负责减少问题,从而获得多式顶部顶部的计算硬性结果。我们证明这种计算差异的制度(以质量密度和美元P\neq NP美元的标准预测为条件)是当维部位美元趋向于无限时,而表面数量以美元线性为线性时。