Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision. However, the irregular structure of meshes makes it hard to exploit the power of CNNs directly. A subdivision surface provides a hierarchical multi-resolution structure, and each face in a closed 2-manifold triangle mesh is exactly adjacent to three faces. Motivated by these two properties, this paper introduces a novel and flexible CNN framework, named SubdivNet, for 3D triangle meshes with Loop subdivision sequence connectivity. Making an analogy between mesh faces and pixels in a 2D image allows us to present a mesh convolution operator to aggregate local features from adjacent faces. By exploiting face neighborhoods, this convolution can support standard 2D convolutional network concepts, e.g. variable kernel size, stride, and dilation. Based on the multi-resolution hierarchy, we propose a spatial uniform pooling layer which merges four faces into one and an upsampling method which splits one face into four. As a result, many popular 2D CNN architectures can be readily adapted to processing 3D meshes. Meshes with arbitrary connectivity can be remeshed to hold Loop subdivision sequence connectivity via self-parameterization, making SubdivNet a general approach. Experiments on mesh classification, segmentation, correspondence, and retrieval from the real-world demonstrate the effectiveness and efficiency of SubdivNet.
翻译:在2D 计算机视野中, 革命神经网络(CNNs) 取得了巨大的突破。 然而, 突变结构的不正常结构使得直接利用CNN的力量很难。 一个亚司形表面提供了一种分层多分辨率结构, 每个面部都与三个面孔完全相邻。 在这两个属性的推动下, 本文引入了一个名为 SubdivNet 的新颖和灵活的CNN框架, 用于 3D 三角间膜与 Loop 亚方向序列连接。 在 2D 图像的网形脸和像素之间做一个类比, 使得我们能够展示一个网形变形操作器, 从相邻的面面面貌综合本地特征。 通过利用相邻的相邻区块, 这种变形形形形形形色色的组合可以支持标准 2D 革命网络概念, 例如, 变形色的内脏大小, 和变形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形色色色的连连连成一个图。 我们提议一个空间统一的集合层组合, 一个将一个面形形形形形形形形形形的网络结构, 直形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形的网络, 直形图图图,, 直形图, 直形形形形图, 直形形形形形形形形形图, 直形形形形形形形形形形形形形形形形形图图图, 直形图图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图, 直形图,