We propose a theoretical framework that generalizes simple and fast algorithms for hierarchical agglomerative clustering to weighted graphs with both attractive and repulsive interactions between the nodes. This framework defines GASP, a Generalized Algorithm for Signed graph Partitioning, and allows us to explore many combinations of different linkage criteria and cannot-link constraints. We prove the equivalence of existing clustering methods to some of those combinations and introduce new algorithms for combinations that have not been studied before. We study both theoretical and empirical properties of these combinations and prove that some of these define an ultrametric on the graph. We conduct a systematic comparison of various instantiations of GASP on a large variety of both synthetic and existing signed clustering problems, in terms of accuracy but also efficiency and robustness to noise. Lastly, we show that some of the algorithms included in our framework, when combined with the predictions from a CNN model, result in a simple bottom-up instance segmentation pipeline. Going all the way from pixels to final segments with a simple procedure, we achieve state-of-the-art accuracy on the CREMI 2016 EM segmentation benchmark without requiring domain-specific superpixels.
翻译:我们提出一个理论框架,将分层组合的简单和快速算法概括为具有吸引力和令人厌恶的节点之间相互作用的加权图表。 这个框架定义了GASP, 即用于签名图形分割的通用算法, 并使我们能够探索不同联系标准的许多组合和无法连接的限制。 我们证明现有组合方法与其中一些组合的等同性, 并引入以前未曾研究过的组合的新算法。 我们研究这些组合的理论和经验特性, 并证明其中一些组合在图表上定义了超度。 我们系统地比较GASP在一系列合成和现有签名组合问题上的各种即时性, 在准确性、 效率和对噪音的稳健性方面。 最后, 我们表明,我们框架中包含的一些算法, 与CNN模型的预测相结合, 导致简单的自下而上分解管道。 我们用一个简单的程序从像素到最后的段段, 我们实现了CREMI 2016 超级EM 断段基准, 需要不要求特定域域基准。