We introduce and analyse a new family of algorithms which generalizes and unifies both the mirror descent and the dual averaging algorithms. The unified analysis of the algorithms involves the introduction of a generalized Bregman divergence which utilizes subgradients instead of gradients. Our approach is general enough to encompass classical settings in convex optimization, online learning, and variational inequalities such as saddle-point problems.


翻译:我们引入并分析一个新的算法体系,该体系将镜底和双平均算法加以概括化和统一化。 对算法的统一分析包括引入一个通用的布雷格曼差异,使用次梯度而不是梯度。 我们的方法非常笼统,足以包含典型的曲线优化、在线学习和变相不平等(如马鞍点问题)等典型环境。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Zero-Shot Object Detection
Arxiv
9+阅读 · 2018年7月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员