Given a $d+1$-partite $d$-dimensional simplicial complex, we prove a generalization of the trickle-down theorem. We show that if "on average" faces of co-dimension 2 are $\frac{1-\delta}{d}$-(one-sided) spectral expanders, then any face of co-dimension $k$ is an $O(\frac{1-\delta}{k\delta})$-(one-sided) spectral expander, for all $3\leq k\leq d+1$. For an application, using our theorem as a black-box, we show that links of faces of co-dimension $k$ in recent constructions of bounded degree high dimensional expanders have local spectral expansion at most $O(1/k)$ fraction of the local expansion of worst faces of co-dimension $2$.
翻译:以 $d+ $1 partite $d$d- simplical Complication Complication $1 $1 partite $D$d- displical Complicational Complications, 证明我们对 lile- down 理论的概括化。 我们显示,如果共振2 的“ 平均” 面是 $\ frac{1-\ delta} $1 美元( delta\ k\ delta} $- (单面) 光谱扩展器, 3\leq kleq d+1 $。 对于一个应用程序,我们用我们的正态作为黑盒, 我们显示, 在最近封闭度高维度扩张器的构造中, 共振共振面面面面面面面面面的链接到本地的光谱扩展量最多为$O1/k美元, 地方最差面的扩展部分为$2美元 。