Reconstructing textured meshes from colored point clouds is an important but challenging task. Most existing methods yield blurry-looking textures or rely on 3D training data that are hard to acquire. Regarding this, we propose PointDreamer, a novel framework for textured mesh reconstruction from colored point cloud via diffusion-based 2D inpainting. Specifically, we first reconstruct an untextured mesh. Next, we project the input point cloud into 2D space to generate sparse multi-view images, and then inpaint empty pixels utilizing a pre-trained 2D diffusion model. After that, we unproject the colors of the inpainted dense images onto the untextured mesh, thus obtaining the final textured mesh. This project-inpaint-unproject pipeline bridges the gap between 3D point clouds and 2D diffusion models for the first time. Thanks to the powerful 2D diffusion model pre-trained on extensive 2D data, PointDreamer reconstructs clear, high-quality textures with high robustness to sparse or noisy input. Also, it's zero-shot requiring no extra training. In addition, we design Non-Border-First unprojection strategy to address the border-area inconsistency issue, which is less explored but commonly-occurred in methods that generate 3D textures from multiview images. Extensive qualitative and quantitative experiments on various synthetic and real-scanned datasets show the SoTA performance of PointDreamer, by significantly outperforming baseline methods with 30% improvement in LPIPS score (from 0.118 to 0.068). Code at: https://github.com/YuQiao0303/PointDreamer.
翻译:暂无翻译