This article proves the well posedness of the boundary value problemthat arises when PML algorithms are applied to Pauli's equationswith a three dimensional rectangle as computational domain. The absorptionsare positive near the boundary and zero far from the boundary so are always x-dependent. At the flat parts of the boundary of the rectangle, the natural absorbing boundary conditions are imposed.The difficulty addressed is the analysis of the resulting variable coeffi-cient problem on the rectanglar solid with its edges and corners. TheLaplace transform is analysed. It turns on the analysis of a boundaryvalue problem formally obtained by complex stretching. Existence isproved by deriving a boundary value problems for a complex stretchedHelmholtz equation on smoothed domains. This is the first stabilityproof with x-dependent absorptions on a bounded domain whoseboundary is not smooth.
翻译:此文章证明了当 PML 算法应用于Pauli 的方程式时产生的边界值问题的正确性。 以三维矩形作为计算域。 吸收量在边界附近是正数, 与边界相距为零, 所以总是以x为依存。 在矩形边界的平面部分, 自然吸收量的边界条件是强制的。 解决的难题是分析对角和角的对角固体上产生的可变的相容效应问题。 分析Laplace变形。 它转而分析通过复杂的伸展正式获得的边界值问题。 光滑的域上复杂的伸展式Helmholtz 方程式的边界值问题可以证明其存在。 这是第一个在边界不平滑的封闭域上以x为依存的吸收量防的稳定性。