This paper studies covariate adjusted estimation of the average treatment effect in stratified experiments. We work in a general framework that includes matched tuples designs, coarse stratification, and complete randomization as special cases. Regression adjustment with treatment-covariate interactions is known to weakly improve efficiency for completely randomized designs. By contrast, we show that for stratified designs such regression estimators are generically inefficient, potentially even increasing estimator variance relative to the unadjusted benchmark. Motivated by this result, we derive the asymptotically optimal linear covariate adjustment for a given stratification. We construct several feasible estimators that implement this efficient adjustment in large samples. In the special case of matched pairs, for example, the regression including treatment, covariates, and pair fixed effects is asymptotically optimal. Conceptually, we show an equivalence between efficient linear adjustment of a stratified design and doubly-robust semiparametric adjustment of an independent design. We also provide novel asymptotically exact inference methods that allow researchers to report smaller confidence intervals, fully reflecting the efficiency gains from both stratification and adjustment. Simulations and an application to the Oregon Health Insurance Experiment data demonstrate the value of our proposed methods.
翻译:本文研究对分层实验中平均治疗效果的调整后估算, 以调整后估算分层实验中的平均治疗效果。 我们在一个总的框架内工作, 包括匹配的图例设计、 粗缩分层和完全随机化的完整随机化。 与治疗- 异变相互作用的回归调整已知微弱地提高了完全随机化设计的效率。 相反, 我们显示, 对于分层设计来说, 这样的回归估计值一般效率低下, 甚至可能增加比未调整的基准值的估测值差异。 受此结果的驱使, 我们为给定的分层设计得出非同步的最佳线性线性共变调整。 我们为大型样本中实施这种高效调整, 我们建造了若干可行的估算器。 例如, 相匹配的对配对的回归( 包括处理、 共变和对和对齐的固定效果), 以同样的方式, 我们展示了对分层设计设计与双向线性线性调整的高效调整值, 以及独立设计的双向精确度调整方法, 我们提供新颖的精确度方法, 让研究人员能够报告更小的信任度调整, 并充分展示我们的拟议实验性数据应用。