We introduce a Fourier-Bessel-based spectral solver for Cauchy problems featuring Laplacians in polar coordinates under homogeneous Dirichlet boundary conditions. We use FFTs in the azimuthal direction to isolate angular modes, then perform discrete Hankel transform (DHT) on each mode along the radial direction to obtain spectral coefficients. The two transforms are connected via numerical and cardinal interpolations. We analyze the boundary-dependent error bound of DHT; the worst case is $\sim N^{-3/2}$, which governs the method, and the best $\sim e^{-N}$, which then the numerical interpolation governs. The complexity is $O[N^3]$. Taking advantage of Bessel functions being the eigenfunctions of the Laplacian operator, we solve linear equations for all times. For non-linear equations, we use a time-splitting method to integrate the solutions. We show examples and validate the method on the two-dimensional wave equation, which is linear, and on two non-linear problems: a time-dependent Poiseuille flow and the flow of a Bose-Einstein condensate on a disk.
翻译:我们引入了一个以Fleier-Bessel为基础的光谱求解器, 用于处理在同质的Drichlet边界条件下极坐标极地的Laplacians 的孔状问题。 我们使用在正方形方向的FFFTs隔离角形模式, 然后在射线方向的每个模式上执行离散的Hankel变异(DHT), 以获得光谱系数。 两种变异通过数字和主要插图连接。 我们分析DHT的边界误差; 最差的情况是$\sim N ⁇ -3/2}$, 用于调节方法, 以及最佳的 $\sim e ⁇ - N} $, 然后进行数字内插。 复杂性是 $[N3] 3 。 利用Bessel 函数作为Laplicatician操作员的元元功能, 我们用线性方程式解决所有时间差方程式连接解决方案。 我们用一个时间分解的方法来演示和验证两维波方形方形方形方形方形方形方形方形方形方形方形, 线直线, 和两个非线性方形非线性方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形法, 。