We introduce a Fourier-Bessel-based spectral solver for Cauchy problems featuring Laplacians in polar coordinates under homogeneous Dirichlet boundary conditions. We use FFTs in the azimuthal direction to isolate angular modes, then perform discrete Hankel transform (DHT) on each mode along the radial direction to obtain spectral coefficients. The two transforms are connected via numerical and cardinal interpolations. We analyze the boundary-dependent error bound of DHT; the worst case is $\sim N^{-3/2}$, which governs the method, and the best $\sim e^{-N}$, which then the numerical interpolation governs. The complexity is $O[N^3]$. Taking advantage of Bessel functions being the eigenfunctions of the Laplacian operator, we solve linear equations for all times. For non-linear equations, we use a time-splitting method to integrate the solutions. We show examples and validate the method on the two-dimensional wave equation, which is linear, and on two non-linear problems: a time-dependent Poiseuille flow and the flow of a Bose-Einstein condensate on a disk.


翻译:我们引入了一个以Fleier-Bessel为基础的光谱求解器, 用于处理在同质的Drichlet边界条件下极坐标极地的Laplacians 的孔状问题。 我们使用在正方形方向的FFFTs隔离角形模式, 然后在射线方向的每个模式上执行离散的Hankel变异(DHT), 以获得光谱系数。 两种变异通过数字和主要插图连接。 我们分析DHT的边界误差; 最差的情况是$\sim N ⁇ -3/2}$, 用于调节方法, 以及最佳的 $\sim e ⁇ - N} $, 然后进行数字内插。 复杂性是 $[N3] 3 。 利用Bessel 函数作为Laplicatician操作员的元元功能, 我们用线性方程式解决所有时间差方程式连接解决方案。 我们用一个时间分解的方法来演示和验证两维波方形方形方形方形方形方形方形方形方形方形方形, 线直线, 和两个非线性方形非线性方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形方形法, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员