Dealing with NP-hard problems, kernelization is a fundamental notion for polynomial-time data reduction with performance guarantees: in polynomial time, a problem instance is reduced to an equivalent instance with size upper-bounded by a function of a parameter chosen in advance. Kernelization for weighted problems particularly requires to also shrink weights. Marx and V\'egh [ACM Trans. Algorithms 2015] and Etscheid et al. [J. Comput. Syst. Sci. 2017] used a technique of Frank and Tardos [Combinatorica 1987] to obtain polynomial-size kernels for weighted problems, mostly with additive goal functions. We characterize the function types that the technique is applicable to, which turns out to contain many non-additive functions. Using this insight, we systematically obtain kernelization results for natural problems in graph partitioning, network design, facility location, scheduling, vehicle routing, and computational social choice, thereby improving and generalizing results from the literature.
翻译:处理NP-硬性问题,内核化是使用性能保障减少多元时间数据的基本概念:在多元时间,一个问题实例被缩小到一个类似的例子,其大小由预先选择的参数的函数所覆盖。加权问题的内核化特别需要缩小重量。马克思和V\egh[ACM Trans. Algorithms 2015]和Etscheid等人[J.Comput. Syst. Sci. 2017]使用Frank和Tardos[Combinatorica 1987]的技术,为加权问题获取多数值内核,主要是添加目标功能。我们确定该技术适用的功能类型,这些功能后来含有许多非添加功能。我们利用这种洞察力,系统地获得在图形分隔、网络设计、设施位置、时间安排、车辆路线和计算社会选择方面的自然问题的内核化结果,从而改进和概括文献的结果。