Let $\pi\in \Pi(\mu,\nu)$ be a coupling between two probability measures $\mu$ and $\nu$ on a Polish space. In this article we propose and study a class of nonparametric measures of association between $\mu$ and $\nu$. The analysis is based on the Wasserstein distance between $\nu$ and the disintegration $\pi_{x_1}$ of $\pi$ with respect to the first coordinate. We also establish basic statistical properties of this new class of measures: we develop a statistical theory for strongly consistent estimators and determine their convergence rate. Throughout our analysis we make use of the so-called adapted/causal Wasserstein distance, in particular we rely on results established in [Backhoff, Bartl, Beiglb\"ock, Wiesel. Estimating processes in adapted Wasserstein distance. 2020]. Our class of measures offers on alternative to the correlation coefficient proposed by [Dette, Siburg and Stoimenov (2013). A copula-based non-parametric measure of regression dependence. Scandinavian Journal of Statistics 40(1), 21-41] and [Chatterjee (2020). A new coefficient of correlation. Journal of the American Statistical Association, 1-21]. In contrast to these works, our approach also applies to probability laws on general Polish spaces.
翻译:让我们在\Pi (\ mu,\ nu) $\ pie\ $\ pi (\\ mu,\ nu) $ 中, 在波兰空间的两种概率度量 $ mu$ 和 $ nu$ 美元 之间, 我们建议并研究一种非参数度量 $ mu$ 和 $ nu$ 。 分析基于美元与第一个协调点的瓦瑟斯坦距离和解体 $\ pi ⁇ x_ 1美元 美元 。 我们还建立了这一新一类措施的基本统计属性: 我们为高度一致的估测者开发了统计理论, 并确定了其趋同率。 我们在整个分析过程中, 我们使用了所谓的调整/ 库萨瓦尔· 瓦瑟斯坦距离的非参数, 特别是我们依靠[Backhoff, Bartl, Beiglb\ ock, Wiesel. 估计瓦瑟斯坦距离的距离 。 2020] 我们的类措施为[Dette, Siburg and Stimenov (2013), a Costaribal a relist reglivernal] (美国统计局第40年) 和21号《统计标准, Clasmaviolviolview Stal》, (20) 20) 的统计第1, Stviolviewal Stviewal Stviewsview) 20) 的统计第1号杂志。