In this work, we analyze the properties of the solution to the covariance steering problem for discrete time Gaussian linear systems with a squared Wasserstein distance terminal cost. In our previous work, we have shown that by utilizing the state feedback control policy parametrization, this stochastic optimal control problem can be associated with a difference of convex functions program. Here, we revisit the same covariance control problem but this time we focus on the analysis of the problem. Specifically, we establish the existence of solutions to the optimization problem and derive the first and second order conditions for optimality. We provide analytic expressions for the gradient and the Hessian of the performance index by utilizing specialized tools from matrix calculus. Subsequently, we prove that the optimization problem always admits a global minimizer, and finally, we provide a sufficient condition for the performance index to be a strictly convex function (under the latter condition, the problem admits a unique global minimizer). In particular, we show that when the terminal state covariance is upper bounded, with respect to the L\"{o}wner partial order, by the covariance matrix of the desired terminal normal distribution, then our problem admits a unique global minimizing state feedback gain. The results of this paper set the stage for the development of specialized control design tools that exploit the structure of the solution to the covariance steering problem with a squared Wasserstein distance terminal cost.
翻译:在这项工作中,我们分析了离散时间高萨线性系统共变方向问题解决方案的特性,高萨线性系统使用平方瓦塞斯坦距离终端成本。在以往的工作中,我们通过使用国家反馈控制政策分量化,已经表明,通过使用州反馈控制政策分量化,这一随机最佳控制问题可能与康韦克斯函数程序的不同相关。在这里,我们再次研究同样的共变控制问题,但这次我们侧重于分析问题。具体地说,我们确定了优化问题解决方案的存在,并提出了最佳性能的第一和第二顺序条件。我们利用矩阵计算法的专门工具,为性能指数的梯度和赫塞西亚人提供了解析的表达方式。随后,我们证明优化问题总是承认一个全球最小化的康韦克斯函数,最后,我们重新审视了相同的共变数控制问题。特别是,当终点状态变差被上上限时,在尊重L'o 和赫赛尔斯利特标准值值的梯度和赫西勒斯利特,我们所期望的平价分流结构,通过设定的正常配置的平价结构,以最小化的平价分析结果。