Deep neural networks achieve high prediction accuracy when the train and test distributions coincide. In practice though, various types of corruptions occur which deviate from this setup and cause severe performance degradations. Few methods have been proposed to address generalization in the presence of unforeseen domain shifts. In particular, digital noise corruptions arise commonly in practice during the image acquisition stage and present a significant challenge for current robustness approaches. In this paper, we propose a diverse Gaussian noise consistency regularization method for improving robustness of image classifiers under a variety of noise corruptions while still maintaining high clean accuracy. We derive bounds to motivate and understand the behavior of our Gaussian noise consistency regularization using a local loss landscape analysis. We show that this simple approach improves robustness against various unforeseen noise corruptions by 4.2-18.4% over adversarial training and other strong diverse data augmentation baselines across several benchmarks. Furthermore, when combined with state-of-the-art diverse data augmentation techniques, experiments against state-of-the-art show our method further improves robustness accuracy by 3.7% and uncertainty calibration by 5.5% for all common corruptions on several image classification benchmarks.
翻译:深神经网络在列车和测试分布同时达到高预测准确度时, 深神经网络会达到高预测值。 但在实践中, 各种类型的腐败会发生, 与这一设置不同, 并导致严重的性能退化。 几乎没有建议采用什么方法来解决在意外域变换的情况下一般化的问题。 特别是, 在图像获取阶段, 数字噪音腐败通常在实际中出现, 并对当前的稳健性方法提出了重大挑战。 在本文中, 我们提出了多种高山噪音一致性规范化方法, 以便在各种噪音腐败的情况下, 提高图像分类的稳健性, 同时保持较高的清洁性。 我们通过对本地损失地貌的分析, 获得激励和理解高山噪音一致性规范化的界限。 我们表明, 这种简单的方法可以提高抵御各种意外噪音腐败的稳健性, 超过对抗性培训的4. 2-18.4% 和其他强有力的数据增强基线, 跨越数个基准。 此外, 当与最新数据增强技术相结合时,, 针对最新数据增强技术的实验显示我们的方法将进一步提高3.7%的稳健性准确度, 在所有常见腐败基准上, 以5.5% 校准5.5 % 。