Integer programming (IP) is an important and challenging problem. Approximate methods have shown promising performance on both effectiveness and efficiency for solving the IP problem. However, we observed that a large fraction of variables solved by some iterative approximate methods fluctuate around their final converged discrete states in very long iterations. Inspired by this observation, we aim to accelerate these approximate methods by early fixing these fluctuated variables to their converged states while not significantly harming the solution accuracy. To this end, we propose an early fixing framework along with the approximate method. We formulate the whole early fixing process as a Markov decision process, and train it using imitation learning. A policy network will evaluate the posterior probability of each free variable concerning its discrete candidate states in each block of iterations. Specifically, we adopt the powerful multi-headed attention mechanism in the policy network. Extensive experiments on our proposed early fixing framework are conducted to three different IP applications: constrained linear programming, MRF energy minimization and sparse adversarial attack. The former one is linear IP problem, while the latter two are quadratic IP problems. We extend the problem scale from regular size to significantly large size. The extensive experiments reveal the competitiveness of our early fixing framework: the runtime speeds up significantly, while the solution quality does not degrade much, even in some cases it is available to obtain better solutions. Our proposed early fixing framework can be regarded as an acceleration extension of ADMM methods for solving integer programming. The source codes are available at \url{https://github.com/SCLBD/Accelerated-Lpbox-ADMM}.
翻译:英特格编程( IP) 是一个重要且具有挑战性的问题。 近似的方法显示在解决IP问题的效果和效率方面都取得了有希望的绩效。 然而, 我们观察到, 大部分通过一些迭代近似方法解决的变量, 其最终趋同的离散状态在非常长的迭代中波动。 受此观察的启发, 我们的目标是加快这些大致方法, 及早将这些波动变量固定到其趋同状态, 同时不严重损害解决方案的准确性。 为此, 我们提出一个与近似方法一起的早期修正框架。 我们把整个早期修正过程作为Markov决定过程, 并用模拟学习来培训它。 一个政策网络将评估每个自由变量的后端概率, 在每个区段的离散候选状态上波动。 具体地说, 我们在政策网络中采用了强大的多头关注机制。 对我们提议的早期编程框架进行广泛的实验, 包括三种不同的IP应用程序: 限制线性编程, MRF 能源最小化和零散的对抗性攻击。 前者是线性 IP 问题, 而后两个是四重式的 IP 问题。 我们将问题从常规范围的 范围的 范围 范围扩大问题, 范围扩大,, 将问题的规模扩大为大规模的标定的升级,, 升级为我们拥有较快化 的升级 的 的 的 的 性框架, 的, 的升级 的 的 的 的 。