The Fourier extension method, also known as the Fourier continuation method, is a method for approximating non-periodic functions on an interval using truncated Fourier series with period larger than the interval on which the function is defined. When the function being approximated is known at only finitely many points, the approximation is constructed as a projection based on this discrete set of points. In this paper we address the issue of estimating the absolute error in the approximation. The error can be expressed in terms of a system of discrete orthogonal polynomials on an arc of the unit circle, and these polynomials are then evaluated asymptotically using Riemann--Hilbert methods.


翻译:Fourier 扩展法,又称 Fourier 继续方法,是一种方法,用于使用短短的 Fourier 序列,其间距大于该函数定义的间隔,以近似非周期性函数的近似方法。当所近似函数只在有限多点处已知时,近似值根据这组离散点组成为预测值。在本文中,我们处理估算近似绝对误差的问题。错误可以用单位圆弧上的离散或直角多义圆形系统表示,然后用Riemann-Hilbert方法对这些多元体进行无序评价。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月10日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
0+阅读 · 2022年1月6日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员