We examine a family of discrete probability distributions that describes the "spillage number" in the extended balls-in-bins model. The spillage number is defined as the number of balls that occupy their bins minus the total number of occupied bins. This probability distribution can be characterised as a normed version of the expansion of the noncentral Stirling numbers of the second kind in terms of the central Stirling numbers of the second kind. Alternatively it can be derived in a natural way from the extended balls-in-bins model. We derive the generating functions for this distribution and important moments of the distribution. We also derive an algorithm for recursive computation of the mass values for the distribution. Finally, we examine the asymptotic behaviour of the spillage distribution and the performance of an approximation to the distribution.
翻译:我们检查了一组离散概率分布, 描述在扩展的 Ball- in- bins 模型中的“ 溢出数 ” 。 溢出数的定义是, 占用其文件夹的球数减去已占用的文件夹的总数。 这种概率分布可以描述为以第二类中流流数字为标准格式的第二类非中流流数字的扩展版本。 或者, 它可以自然地从扩展的 Ball- in- bins 模型中衍生出。 我们为此分布和重要分布时刻生成函数。 我们还为循环计算分布的质量值得出一个算法。 最后, 我们检查了溢出分布的无症状行为和分布的近似性。