The bidomain equations have been widely used to mathematically model the electrical activity of the cardiac tissue. In this work, we present a potential theory-based Cartesian grid method which is referred as the kernel-free boundary integral (KFBI) method which works well on complex domains to efficiently simulate the linear diffusion part of the bidomain equation. After a proper temporal discretization, the KFBI method is applied to solve the resulting homogeneous Neumann boundary value problems with a second-order accuracy. According to the potential theory, the boundary integral equations reformulated from the boundary value problems can be solved iteratively with the simple Richardson iteration or the Krylov subspace iteration method. During the iteration, the boundary and volume integrals are evaluated by limiting the structured grid-based discrete solutions of the equivalent interface problems at quasi-uniform interface nodes without the need to know the analytical expression of Green's functions. In particular, the discrete linear system of the equivalent interface problem obtained from the standard finite difference schemes or the finite element schemes can be efficiently solved by fast elliptic solvers such as the fast Fourier transform based solvers or those based on geometric multigrid iterations after an appropriate modification at the irregular grid nodes. Numerical results for solving the FitzHugh-Nagumo bidomain equations in both two- and three-dimensional spaces are presented to demonstrate the numerical performance of the KFBI method such as the second-order accuracy and the propagation and scroll wave of the voltage simulated on the real human left ventricle model.


翻译:色调方程式已被广泛用于数学模拟心脏组织的电子活动。 在这项工作中,我们展示了一种潜在的基于理论的卡尔提斯格网格法,它被称为无内核边界集成法(KFBI),在复杂的域上运作良好,可以有效地模拟色调方程式的线性扩散部分。在适当的时间分解后,KFBI法被用于以二级准确性能解决由此产生的同质内纽曼边界值问题。根据潜在的理论,从边界值问题重塑的边界整体方程式可以通过简单的理查森迭接式或Krylov次空间迭代法来迭接式解决。在迭代法期间,边界和体积组合法在准统一界面节点上限制对等界面问题的结构性网格分化独立解决方案,而无需了解绿色功能的分析表达。 特别是,从标准定值差异方案或定值要素元素组合组合组合组合组合的离线系统,可以通过快速的利差解式模型解决,例如快速的里弗特罗尔洛夫·洛夫(Krylov) Volevulov 分流法的分流的分流法,在快速平流法中,在快速的平流法的平流法的平流法性平流法中,在基的平流法的平流法的平流法的平流法的平流法的平流法的平流的平流法的平流法的平流法的平流法的平流法的平流法的平流法的平流法的平流法,这些基的平流法的平流法的平流法的平流法,这些基根基的平流的平流法的平流法的平流法的平流法的平流的平流法的平流法的平流法的平流法的平流法的平流法的平的平的平的平流法的平流法的平流法的根根根根根根基的根基的根基的根基的根基的根基的根基的根基的根根基的根基的平基的根根根根根基的根基的根基的根基的根基的根根根根根基的根基的根基的根基的根基的根基

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员