Monte Carlo methods are the standard procedure for estimating complicated integrals of multidimensional Bayesian posterior distributions. In this work, we focus on LAIS, a class of adaptive importance samplers where Markov chain Monte Carlo (MCMC) algorithms are employed to drive an underlying multiple importance sampling (IS) scheme. Its power lies in the simplicity of the layered framework: the upper layer locates proposal densities by means of MCMC algorithms; while the lower layer handles the multiple IS scheme, in order to compute the final estimators. The modular nature of LAIS allows for different possible choices in the upper and lower layers, that will have different performance and computational costs. In this work, we propose different enhancements in order to increase the efficiency and reduce the computational cost, of both upper and lower layers. The different variants are essential if we aim to address computational challenges arising in real-world applications, such as highly concentrated posterior distributions (due to large amounts of data, etc.). Hamiltonian-driven importance samplers are presented and tested. Furthermore, we introduce different strategies for designing cheaper schemes, for instance, recycling samples generated in the upper layer and using them in the final estimators in the lower layer. Numerical experiments show the benefits of the proposed schemes as compared to the vanilla version of LAIS and other benchmark methods.
翻译:蒙特卡洛方法是评估多维贝叶西亚后天体分布的复杂组成部分的标准程序。在这项工作中,我们侧重于LAIS,这是一个适应性重要抽样者类别,使用Markov连锁Monte Carlo(MCMC)算法推动一个基本的多重重要性抽样(IS)计划。它的力量在于分层框架的简单性:上层通过MCMC算法定位建议密度;下层处理多种IS计划,以便计算最终估计数。LAIS模块性质允许在上层和下层作出不同的可能的选择,这些选择的性能和计算成本不同。在这项工作中,我们提出不同的改进建议,以提高上层和下层的效率和降低计算成本。不同的变式至关重要,这样我们才能通过MMC算法解决现实应用中出现的计算挑战,如高度集中的后天体分布(由于数据数量巨大等)。汉密尔顿驱动重要性取样器的模块性质允许在上层和下层作出不同的选择,这些选择将具有不同的性能和计算成本。此外,我们提出了不同的战略,用于设计更廉价计划,例如,提高上层和下层计算成本,以提高效率和降低计算成本。我们建议,以便提高上层和下层计算结果。不同的变换取新层的样品,以展示层中,以展示层和试验,以展示。