Modern Convolutional Neural Network (CNN) architectures, despite their superiority in solving various problems, are generally too large to be deployed on resource constrained edge devices. In this paper, we reduce memory usage and floating-point operations required by convolutional layers in CNNs. We compress these layers by generalizing the Kronecker Product Decomposition to apply to multidimensional tensors, leading to the Generalized Kronecker Product Decomposition (GKPD). Our approach yields a plug-and-play module that can be used as a drop-in replacement for any convolutional layer. Experimental results for image classification on CIFAR-10 and ImageNet datasets using ResNet, MobileNetv2 and SeNet architectures substantiate the effectiveness of our proposed approach. We find that GKPD outperforms state-of-the-art decomposition methods including Tensor-Train and Tensor-Ring as well as other relevant compression methods such as pruning and knowledge distillation.
翻译:现代革命神经网络(CNN)结构尽管在解决各种问题方面具有优越性,但一般而言过于庞大,无法用于资源限制边缘装置。在本文中,我们减少了CNN系统革命层所需的记忆用量和浮点操作。我们压缩这些层,将Kronecker产品分解法推广到多维变色器,导致通用Kronecker产品分解(GKPD)。我们的方法产生一个插件和游戏模块,可以用来作为任何革命层的投放替代。CIFAR-10的图像分类实验结果以及使用ResNet、MobtNetv2和SeNet结构的图像网络数据集证实了我们拟议方法的有效性。我们发现,GKPD超越了包括Tensor-Train和Tensor-Ring在内的最新分解法,以及其它相关的压缩方法,如钻机和知识蒸馏法。