This work considers the problem of modified portmanteau tests for testing the adequacy of FARIMA models under the assumption that the errors are uncorrelated but not necessarily independent (i.e. weak FARIMA). We first study the joint distribution of the least squares estimator and the noise empirical autocovariances. We then derive the asymp-totic distribution of residual empirical autocovariances and autocorrelations. We deduce the asymptotic distribution of the Ljung-Box (or Box-Pierce) modified portmanteau statistics for weak FARIMA models. We also propose another method based on a self-normalization approach to test the adequacy of FARIMA models. Finally some simulation studies are presented to corroborate our theoretical work. An application to the Standard \& Poor's 500 and Nikkei returns also illustrate the practical relevance of our theoretical results. AMS 2000 subject classifications: Primary 62M10, 62F03, 62F05; secondary 91B84, 62P05.
翻译:这项工作考虑了修改港口门托测试以测试FARIMA模型是否充分的问题,假设错误不相关,但不一定独立(即薄弱的FARIMA);我们首先研究最小正方天花板和噪声实验自动变化的联合分布,然后得出剩余实验性自动变异和自动变异的无症状分布;我们推断出Ljung-Box(或Box-Pierce)修改后的FARIMA模型的无症状分布;我们还提议了另一种基于自我正常化方法的方法,以测试FARIMA模型是否充分;最后介绍了一些模拟研究,以证实我们的理论工作;对标准“Porth's 500”和“Nikkei”返回的应用也说明了我们的理论结果的实际意义。