Process mining aims to diagnose and improve operational processes. Process mining techniques allow analyzing the event data generated and recorded during the execution of (business) processes to gain valuable insights. Process discovery is a key discipline in process mining that comprises the discovery of process models on the basis of the recorded event data. Most process discovery algorithms work in a fully automated fashion. Apart from adjusting their configuration parameters, conventional process discovery algorithms offer limited to no user interaction, i.e., we either edit the discovered process model by hand or change the algorithm's input by, for instance, filtering the event data. However, recent work indicates that the integration of domain knowledge in (semi-)automated process discovery algorithms often enhances the quality of the process models discovered. Therefore, this paper introduces Cortado, a novel process discovery tool that leverages domain knowledge while incrementally discovering a process model from given event data. Starting from an initial process model, Cortado enables the user to incrementally add new process behavior to the process model under construction in a visual and intuitive manner. As such, Cortado unifies the world of manual process modeling with that of automated process discovery.
翻译:工艺采矿技术可以分析在执行(企业)过程过程中产生和记录的事件数据,以获得有价值的洞察力。过程发现是过程采矿中的一个关键学科,包括根据记录的事件数据发现过程模型。大多数过程发现算法都以完全自动化的方式运作。除了调整其配置参数外,传统的过程发现算法仅提供不用户互动的限定,即我们要么手工编辑所发现的过程模型,要么通过过滤事件数据等方法改变算法输入。然而,最近的工作表明,(半)自动过程发现算法中域知识的整合往往提高所发现过程模型的质量。因此,本文件介绍了科塔多,这是一个新的过程发现工具,利用领域知识,同时逐渐从给定事件数据中发现一个过程模型。从初始过程模型开始,科塔多使用户能够以视觉和直观方式在正在构建的过程模型中逐步增加新的过程行为。因此,科塔多将手工过程模型与自动发现过程世界化。