We consider the problem of empirical Bayes estimation of multiple variances $\sigma_i^2$'s when provided with sample variances $s_i^2$'s. Assuming an arbitrary prior on $\sigma_i^2$'s, we derive different versions of the Bayes estimators using different loss functions. For one particular loss function, the resultant Bayes estimator relies on $F(s^2)$, the marginal cumulative distribution function of the sample variances only. When replacing it with the empirical distribution function $F_N(s^2)$, we obtain an empirical Bayes version called {\bf F}-modeling based {\bf E}mpirical {\bf B}ayes estimator of {\bf V}ariances (F-EBV). It is shown theoretically that F-EBV converges to the corresponding Bayes version {\it uniformly} over a large set. It can be used for post-selection estimation and the {\it finite Bayes} inference problem. We have demonstrated the advantages of F-EBV through extensive simulations and real data analysis.


翻译:我们考虑了在提供抽样差异时对多种差异的实证贝斯估计 $s_isigma_i ⁇ 2$ 的问题。假设在使用$sisgma_i ⁇ 2$之前是任意的,我们使用不同的损失函数来得出不同版本的拜亚斯估计器。对于一个特定的损失函数,由此产生的拜亚斯估计器仅依赖$F(s=2)美元,抽样差异的边际累积分布功能。当用经验性分配函数 $F_N(s__2) 来取代它时,我们得到了一个经验性贝亚斯版本,名为 $bf F} 模型, 以 spiricalalalalal_bf E}B}我们通过广泛的模拟和真实数据分析证明了F-EBV的优势。我们通过广泛的模拟和真实数据分析证明了F-EBV的优势。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员