This study explores a new mathematical operator, symbolized as $\cupplus$, for information aggregation, aimed at enhancing traditional methods by directly amalgamating probability distributions. This operator facilitates the combination of probability densities, contributing a nuanced approach to probabilistic analysis. We apply this operator to a personalized incentive scenario, illustrating its potential in a practical context. The paper's primary contribution lies in introducing this operator and elucidating its elegant mathematical properties. This exploratory work marks a step forward in the field of information fusion and probabilistic reasoning.
翻译:暂无翻译